
LS Player MQTT API

1. Управление проигрыванием и получение статистики

Описывает MQTT API сервиса.

Сервис осуществляет проигрывание анимаций.

SUB lm/player

Принимает команды управления проигрыванием.

Play

Payload command format

{
 "cmd": 'play',
 "what_playing": Union['playlist', 'cue'],
 "entity": Union[int, str],
 "count": Optional[int],
 "priority": int,
}

Example

 {
 "cmd": "play",
 "what_playing": "playlist",
 "entity": 19,
 "count": Null,
 "priority": 4,
 }

cmd - Название команды.
what_playing - Тип сущности для воспроизведения. Принимает два значения “playlist” и “cue”.
entity - ID или наименование проигрываемой сущности.
count - Опциональный параметр. Количество повторений проигрывания. Если не задан или значение
равно Null то проигрывание продолжится до получения следующей команды с равным или боле
высоким приоритетом.
priority - Приоритет команды. Значение от 1 до 100. Чем больше значение - тем выше приоритет.
Команда с более низким приоритетом не может отменять команду с более высоким приоритетом.
Текущие сопоставления приоритетов: Расписание - 60, Триггер - 50, Ручной запуск - 40.

Stop

Payload stop command format

{
 "cmd": 'stop',
 "priority": int,
}

Example

 {
 "cmd": "stop",
 "priority": 4,
 }

cmd - Название команды.
priority - Приоритет команды. Значение от 1 до 100. Чем больше значение - тем выше приоритет.
Команда с более низким приоритетом не может отменять команду с более высоким приоритетом.
Текущие сопоставления приоритетов: Расписание - 60, Триггер - 50, Ручной запуск - 40.

PUB lm/statistic/playing_progress_info

Публикует статистику проигрывания.

Зная текущее значение fps можно перевести значения во время.

Например при fps равном 40 frame_count равном 1000 и frame_number равном 120 мы получим:
1 / 40 * 1000 = 25 - Общая продолжительность анимации в секундах. 1 / 40 * 120 = 3 - На текущий момент
анимация проиграла 3 секунды.

Payload format

Представляет из себя строку в формате "{frame_count}, {frame_number}"

Example

“1000, 35”

frame_count - Общее количество фреймов.
frame_number - Сколько фреймов проиграно на текущий момент.

PUB lm/statistic/playing_ent_info

Публикует Наименования того, что сейчас проигрывается.

Payload format

{
 "playlist": Optional[str],
 'scene': Optional[int],
 'cue': Optional[str],
}

Example

{
 "playlist": "NewYearPlaylist",
 "scene": 1,
 "cue": "BLUE.cue",
}

playlist - Наименование проигрываемого плейлиста. Может быть None.
scene - Порядковый номер в плейлисте. Может быть None.
cue - Наименование проигрываемой анимации. Может быть None.

PUB lm/statistic/current_playing_priority

Публикует текущий приоритет проигрывания.

Payload format

int

Example

60

2. Управление настройками проигрывания и сущностей

PUB lm/settings/location/coordinates

Публикует координаты плеера.

Payload command format

{
 "latitude": float,
 "longitude": float,
}

Example

 {
 "latitude": "56.821019190097616",
 "longitude": "60.59559633825789"
 }

PUB lm/settings/location/address

Публикует адрес устройства.

Payload format

{
 "address": str
}

Example

{
"address": "Yekaterinburg"
}

PUB lm/settings/datetime/timezone

Публикует часовой пояс плеера.

Payload format

{
 "timezone": str
}

Example

{
"timezone": "Asia/Yekaterinburg"
}

timezone - Часовой пояс плеера.

PUB lm/settings/player/fps

Публикует настройки fps.

Payload format

{
 "fps": int,
}

Example

{
"fps": 40

}

PUB lm/settings/player/artsync

Публикует статус отправки artsync.

Payload format

{
 "artsync": bool,
}

Example

{"artsync": false}

PUB lm/settings/player/blackout_between_playing_command

Публикует настройку необходимости blackout между событиями проигрывания.

Payload format

{
 "blackout_between_playing_command": bool,
}

Example

{
"blackout_between_playing_command": false
}

PUB lm/settings/player/playing_priority

Публикует приоритеты проигрывания плеера.

Payload command format

{
 "buttons": int,
 "triggers": int,
 "scheduler": int,
}

Example

 {
 "buttons": 4,
 "triggers": 5,
 "scheduler": 6,
 }

Приоритет представляет из себя целое число от 1 до 100. Чем выше число тем меньше приоритет.

PUB lm/settings/player/universes

Публикует настройки вселенных плеера.

Payload format

[
 {
 "number": int,
 "device": {
 "name": str,
 "description": str,
 "network_mode": str,
 "ip": str,
 "port": int,
 } | None
 }
]

Example

[
 {
 "number": 1,
 "device": {
 "name": "artnet_device_1",
 "description": "Main ArtNet converter",
 "network_mode": "unicast",
 "ip": "192.168.1.100",
 "port": 6454
 }
 },
 {
 "number": 2,
 "device": null
 }
]

number - Номер вселенной (0-32768).
device - Настройки ArtNet устройства для данной вселенной. Может быть null если устройство не
назначено.

name - Уникальное имя ArtNet устройства (до 32 символов).

description - Описание устройства (до 255 символов, может быть пустым).
network_mode - Режим работы сети (“unicast” или “broadcast”).
ip - IP адрес устройства.
port - Порт устройства (по умолчанию 6454, диапазон 1-65534).

PUB lm/cues

Публикует список cue файлов загруженных на плеер

Payload format

[
 {
 "id": int,
 "filename": str,
 "uni_count": int,
 "frame_count": int,
 "created": str,
 }
]

Example

[
 {
 "id": 47,
 "filename": "00-5.cue",
 "uni_count": 1,
 "frame_count": 220,
 "created": "2024-03-07T08:30:16.926447Z"
 }
]

id - Уникальный идентификатор анимации.
filename - Имя файла.
uni_count - Количество вселенных в файле.
frame_count - Количество фреймов в файле.
created - Время загрузки анимации в ISO формате.

PUB lm/playlists

Публикует список cue файлов загруженных на плеер

Payload format

[
 {
 "id": int,

 "name": str,
 "scenes": [
 {
 "id": int,
 "order": int,
 "cue": {
 "created": str,
 "filename": str,
 "frame_count": int,
 "id": int,
 "uni_count": int
 },
 "fade_in": float,
 "fade_out": float,
 "transition_time": float,
 "repeat_value": int,
 }
]
 }
]

Example

[
 {
 "id": 19,
 "name": "Test",
 "scenes": [
 {
 "id": 71,
 "order": 0,
 "cue": {
 "created": "2024-03-07T08:27:23.567083Z",
 "filename": "5-8.cue",
 "frame_count": 220,
 "id": 51,
 "uni_count": 1
 },
 "fade_in": 1.0,
 "fade_out": 0.0,
 "transition_time": 2.0,
 "repeat_value": 3600
 }
]
 }
]

id - Уникальный идентификатор плейлиста.
name - Название плейлиста.
scenes - Сцены.В сценах содержится вся информация об эффектах примененных к cue и порядковый
номер воспроизведения внутри плейлиста.

id - Уникальный идентификатор сцены.

order - Порядковый номер воспроизведения внутри плейлиста.
cue - Параметры анимации. Подробнее
fade_in - Время fade_in.
fade_out - Время fade_out.
transition_time - Время перехода.
repeat_value - Количество повторений.

3. Управление расписанием

PUB lm/scheduler/error

Публикует ошибки.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

{
 msg: str
 data: Any
}

msg - contain error message
data - contain related error data

PUB lm/scheduler/events

Публикует список всех событий календаря.

Payload format

[
 {
 "id": str,
 "title": str,
 "priority": int,
 "actions": {
 "player": Optional[{
 "cmd": Literal['play'],
 "entity_type": Union['playlist', 'cue'],
 "entity_id": int,
 }],
 "do1": Optional[{
 "state": Literal[0, 1],
 }],

 "do2": Optional[{
 "state": Literal[0, 1],
 }],
 "do3": Optional[{
 "state": Literal[0, 1],
 }],
 },
 "rrule": {
 "freq": Union['YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY'],
 "interval": int,
 "start_date": str,
 "start_time_type": Union['sunset', 'sunrise', 'time'],
 "start_time": Optional[str],
 "start_time_offset": Optional[int],
 "until_date": Optional[str],
 "until_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "until_time": Optional[str],
 "until_time_offset": Optional[int],
 "count": Optional[int],
 "from_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "from_time": Optional[str],
 "from_time_offset": Optional[int],
 "to_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "to_time": Optional[str],
 "to_time_offset": Optional[int],
 "bymonth": Optional[
 list[
 Union[
 'January', 'February', 'March', 'April', 'May', 'June',
'July',
 'August', 'September', 'October', 'November', 'December',
],
],
],
 "bymonthday": Optional[list[int]],
 "byweekday": Optional[list[Union['MO', 'TU', 'WE', 'TH', 'FR', 'SA',
'SU']]],
 "from_min": Optional[int],
 "to_min": Optional[int],
 }
 }
]

Example

[
 {
 "id": "abe4c633-8e3f-4938-94e2-efd135d993fc",
 "title": "holiday",
 "priority": 1,
 "actions": {

 "player": {
 "cmd": "play",
 "entity_type": "playlist",
 "entity_id": 19
 },
 "do1": {
 "state": 1
 },
 "do2": null,
 "do3": null
 },
 "rrule": {
 "freq": "DAILY",
 "interval": 1,
 "start_date": "2024-01-20",
 "start_time_type": "time",
 "start_time": "00:00",
 "start_time_offset": null,
 "count": 1,
 "until_date": null,
 "until_time_type": null,
 "until_time": null,
 "until_time_offset": null,
 "from_time_type": "sunset",
 "from_time": null,
 "from_time_offset": 0,
 "to_time_type": "sunset",
 "to_time": null,
 "to_time_offset": 0,
 "bymonth": null,
 "bymonthday": null,
 "byweekday": null,
 "from_min": null,
 "to_min": null
 }
 }
]

id - Уникальный идентификатор события (UUID).
title - Название события.
priority - Приоритет события. Чем выше значение тем выше приоритет.
actions - Действия которые должны быть выполнены при наступлении события.
player - Действие для плеера. Содержит команду воспроизведения.
cmd - Команда для плеера. Всегда равна ‘play’.
entity_type - Тип сущности для воспроизведения. Может принимать значения ‘playlist’, ‘cue’.
entity_id - Уникальный идентификатор сущности для воспроизведения.
do1 - Действие для цифрового выхода DO1.
do2 - Действие для цифрового выхода DO2.
do3 - Действие для цифрового выхода DO3.
state - Состояние цифрового выхода. Может принимать значения 0 (выключен) или 1 (включен).
rrule - Правила повторения события (recurrence rule).
freq - Частота повторений события. Может принимать значения: ‘YEARLY’, ‘MONTHLY’, ‘WEEKLY’, ‘DAILY’,

‘HOURLY’.
interval - Периодичность повторения события.
start_date - Дата старта события. Формат YYYY-mm-dd.
start_time_type - Тип времени старта события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
start_time - Время старта события. Формат: %H:%M. Заполнено если start_time_type равен ‘time’.
start_time_offset - Сдвиг времени старта события. Может принимать отрицательные значения.
Заполнено если start_time_type равен ‘sunset’ или ‘sunrise’.
count - Количество повторений события. Не может быть заполнен одновременно с полем until_date.
Если оба поля не заполнены то событие не никогда не завершается.
until_date - Дата завершения события. Формат YYYY-mm-dd. Не может быть заполнен одновременно с
полем count. Если оба поля не заполнены то событие не никогда не завершается.
until_time_type - Тип времени завершения события. Может принимать значения: ‘sunset’, ‘sunrise’,
‘time’. Заполнено если заполнено поле until_date.
until_time - Время завершения события. Формат: %H:%M. Заполнено если заполнено поле until_date и
until_time_type равен ‘time’.
until_time_offset - Сдвиг времени завершения события. Заполнено если заполнено поле until_date и
until_time_type равен ‘sunset’ или ‘sunrise’.
from_time_type - Тип времени начала события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
Заполнено если поле freq не равно ‘HOURLY’.
from_time - Время начала события. Формат: %H:%M. Заполнено если поле freq не равно ‘HOURLY’ и
from_time_type равен ‘time’.
from_time_offset - Сдвиг времени начала события. Может принимать отрицательные значения.
Заполнено если поле freq не равно ‘HOURLY’ и from_time_type равен ‘sunset’ или ‘sunrise’.
to_time_type - Тип времени окончания события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
Заполнено если поле freq не равно ‘HOURLY’.
to_time - Время окончания события. Формат: %H:%M. Заполнено если заполнено поле freq не равно
‘HOURLY’ и to_time_type равен ‘time’.
to_time_offset - Сдвиг времени завершения события. Заполнено если заполнено поле freq не равно
‘HOURLY’ и to_time_type равен ‘sunset’ или ‘sunrise’.
bymonth - Месяцы в которые событие активно. Заполнено если поле freq равно ‘YEARLY’.
bymonthday - Дни месяца в которые событие активно. Заполнено если поле freq равно ‘MONTHLY’.
byweekday - Дни недели в которые событие активно. Заполнено если поле freq равно ‘WEEKLY’.
from_min - Минута с которой начинается событие. Заполнено если поле freq равно ‘HOURLY’.
to_min - Минута окончания события. Заполнено если поле freq равно ‘HOURLY’.

SUB lm/scheduler/events/add

Добавляет новое событие.

Payload format

{
 "title": str,
 "priority": int,
 "actions": {
 "player": Optional[{
 "cmd": Literal['play'],
 "entity_type": Union['playlist', 'cue'],
 "entity_id": int,
 }],
 "do1": Optional[{

 "state": Literal[0, 1],
 }],
 "do2": Optional[{
 "state": Literal[0, 1],
 }],
 "do3": Optional[{
 "state": Literal[0, 1],
 }],
 },
 "rrule": {
 "freq": Union['YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY'],
 "interval": int,
 "start_date": str,
 "start_time_type": Union['sunset', 'sunrise', 'time'],
 "start_time": Optional[str],
 "start_time_offset": Optional[int],
 "until_date": Optional[str],
 "until_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "until_time": Optional[str],
 "until_time_offset": Optional[int],
 "count": Optional[int],
 "from_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "from_time": Optional[str],
 "from_time_offset": Optional[int],
 "to_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "to_time": Optional[str],
 "to_time_offset": Optional[int],
 "bymonth": Optional[
 list[
 Union[
 'January', 'February', 'March', 'April', 'May', 'June',
'July',
 'August', 'September', 'October', 'November', 'December',
],
],
],
 "bymonthday": Optional[list[int]],
 "byweekday": Optional[list[Union['MO', 'TU', 'WE', 'TH', 'FR', 'SA',
'SU']]],
 "from_min": Optional[int],
 "to_min": Optional[int],
 }
}

Example

{
 "title": "holiday",
 "priority": 1,
 "actions": {
 "player": {

 "cmd": "play",
 "entity_type": "playlist",
 "entity_id": 19
 },
 "do1": {
 "state": 1
 },
 "do2": null,
 "do3": null
 },
 "rrule": {
 "freq": "DAILY",
 "interval": 1,
 "start_date": "2024-01-20",
 "start_time_type": "time",
 "start_time": "00:00",
 "start_time_offset": null,
 "count": 1,
 "until_date": null,
 "until_time_type": null,
 "until_time": null,
 "until_time_offset": null,
 "from_time_type": "sunset",
 "from_time": null,
 "from_time_offset": 0,
 "to_time_type": "sunset",
 "to_time": null,
 "to_time_offset": 0,
 "bymonth": null,
 "bymonthday": null,
 "byweekday": null,
 "from_min": null,
 "to_min": null
 }
}

title - Название события.
priority - Приоритет события. Чем выше значение тем выше приоритет.
actions - Действия которые должны быть выполнены при наступлении события.
player - Действие для плеера. Содержит команду воспроизведения.
cmd - Команда для плеера. Всегда равна ‘play’.
entity_type - Тип сущности для воспроизведения. Может принимать значения ‘playlist’, ‘cue’.
entity_id - Уникальный идентификатор сущности для воспроизведения.
do1 - Действие для цифрового выхода DO1.
do2 - Действие для цифрового выхода DO2.
do3 - Действие для цифрового выхода DO3.
state - Состояние цифрового выхода. Может принимать значения 0 (выключен) или 1 (включен).
rrule - Правила повторения события (recurrence rule).
freq - Частота повторений события. Может принимать значения: ‘YEARLY’, ‘MONTHLY’, ‘WEEKLY’, ‘DAILY’,
‘HOURLY’.
interval - Периодичность повторения события.
start_date - Дата старта события. Формат YYYY-mm-dd.

start_time_type - Тип времени старта события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
start_time - Время старта события. Формат: %H:%M. Заполнено если start_time_type равен ‘time’.
start_time_offset - Сдвиг времени старта события. Может принимать отрицательные значения.
Заполнено если start_time_type равен ‘sunset’ или ‘sunrise’.
count - Количество повторений события. Не может быть заполнен одновременно с полем until_date.
Если оба поля не заполнены то событие не никогда не завершается.
until_date - Дата завершения события. Формат YYYY-mm-dd. Не может быть заполнен одновременно с
полем count. Если оба поля не заполнены то событие не никогда не завершается.
until_time_type - Тип времени завершения события. Может принимать значения: ‘sunset’, ‘sunrise’,
‘time’. Заполнено если заполнено поле until_date.
until_time - Время завершения события. Формат: %H:%M. Заполнено если заполнено поле until_date и
until_time_type равен ‘time’.
until_time_offset - Сдвиг времени завершения события. Заполнено если заполнено поле until_date и
until_time_type равен ‘sunset’ или ‘sunrise’.
from_time_type - Тип времени начала события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
Заполнено если поле freq не равно ‘HOURLY’.
from_time - Время начала события. Формат: %H:%M. Заполнено если поле freq не равно ‘HOURLY’ и
from_time_type равен ‘time’.
from_time_offset - Сдвиг времени начала события. Может принимать отрицательные значения.
Заполнено если поле freq не равно ‘HOURLY’ и from_time_type равен ‘sunset’ или ‘sunrise’.
to_time_type - Тип времени окончания события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
Заполнено если поле freq не равно ‘HOURLY’.
to_time - Время окончания события. Формат: %H:%M. Заполнено если заполнено поле freq не равно
‘HOURLY’ и to_time_type равен ‘time’.
to_time_offset - Сдвиг времени завершения события. Заполнено если заполнено поле freq не равно
‘HOURLY’ и to_time_type равен ‘sunset’ или ‘sunrise’.
bymonth - Месяцы в которые событие активно. Заполнено если поле freq равно ‘YEARLY’.
bymonthday - Дни месяца в которые событие активно. Заполнено если поле freq равно ‘MONTHLY’.
byweekday - Дни недели в которые событие активно. Заполнено если поле freq равно ‘WEEKLY’.
from_min - Минута с которой начинается событие. Заполнено если поле freq равно ‘HOURLY’.
to_min - Минута окончания события. Заполнено если поле freq равно ‘HOURLY’.

SUB lm/scheduler/events/delete

Удаляет событие.

Payload format

{
 id: str
}

Example

 {
 "id": "abe4c633-8e3f-4938-94e2-efd135d993fc",
 }

id - Уникальный идентификатор события. ___

SUB lm/scheduler/events/update

Обновляет параметры события.

Payload format

{
 "id": str,
 "title": str,
 "priority": int,
 "actions": {
 "player": Optional[{
 "cmd": Literal['play'],
 "entity_type": Union['playlist', 'cue'],
 "entity_id": int,
 }],
 "do1": Optional[{
 "state": Literal[0, 1],
 }],
 "do2": Optional[{
 "state": Literal[0, 1],
 }],
 "do3": Optional[{
 "state": Literal[0, 1],
 }],
 },
 "rrule": {
 "freq": Union['YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY'],
 "interval": int,
 "start_date": str,
 "start_time_type": Union['sunset', 'sunrise', 'time'],
 "start_time": Optional[str],
 "start_time_offset": Optional[int],
 "until_date": Optional[str],
 "until_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "until_time": Optional[str],
 "until_time_offset": Optional[int],
 "count": Optional[int],
 "from_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "from_time": Optional[str],
 "from_time_offset": Optional[int],
 "to_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "to_time": Optional[str],
 "to_time_offset": Optional[int],
 "bymonth": Optional[
 list[
 Union[
 'January', 'February', 'March', 'April', 'May', 'June',
'July',
 'August', 'September', 'October', 'November', 'December',
],

],
],
 "bymonthday": Optional[list[int]],
 "byweekday": Optional[list[Union['MO', 'TU', 'WE', 'TH', 'FR', 'SA',
'SU']]],
 "from_min": Optional[int],
 "to_min": Optional[int],
 }
}

Example

{
 "id": "abe4c633-8e3f-4938-94e2-efd135d993fc",
 "title": "holiday",
 "priority": 1,
 "actions": {
 "player": {
 "cmd": "play",
 "entity_type": "playlist",
 "entity_id": 19
 },
 "do1": {
 "state": 1
 },
 "do2": null,
 "do3": null
 },
 "rrule": {
 "freq": "DAILY",
 "interval": 1,
 "start_date": "2024-01-20",
 "start_time_type": "time",
 "start_time": "00:00",
 "start_time_offset": null,
 "count": 1,
 "until_date": null,
 "until_time_type": null,
 "until_time": null,
 "until_time_offset": null,
 "from_time_type": "sunset",
 "from_time": null,
 "from_time_offset": 0,
 "to_time_type": "sunset",
 "to_time": null,
 "to_time_offset": 0,
 "bymonth": null,
 "bymonthday": null,
 "byweekday": null,
 "from_min": null,
 "to_min": null

 }
}

id - Уникальный идентификатор события (UUID).
title - Название события.
priority - Приоритет события. Чем выше значение тем выше приоритет.
actions - Действия которые должны быть выполнены при наступлении события.
player - Действие для плеера. Содержит команду воспроизведения.
cmd - Команда для плеера. Всегда равна ‘play’.
entity_type - Тип сущности для воспроизведения. Может принимать значения ‘playlist’, ‘cue’.
entity_id - Уникальный идентификатор сущности для воспроизведения.
do1 - Действие для цифрового выхода DO1.
do2 - Действие для цифрового выхода DO2.
do3 - Действие для цифрового выхода DO3.
state - Состояние цифрового выхода. Может принимать значения 0 (выключен) или 1 (включен).
rrule - Правила повторения события (recurrence rule).
freq - Частота повторений события. Может принимать значения: ‘YEARLY’, ‘MONTHLY’, ‘WEEKLY’, ‘DAILY’,
‘HOURLY’.
interval - Периодичность повторения события.
start_date - Дата старта события. Формат YYYY-mm-dd.
start_time_type - Тип времени старта события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
start_time - Время старта события. Формат: %H:%M. Заполнено если start_time_type равен ‘time’.
start_time_offset - Сдвиг времени старта события. Может принимать отрицательные значения.
Заполнено если start_time_type равен ‘sunset’ или ‘sunrise’.
count - Количество повторений события. Не может быть заполнен одновременно с полем until_date.
Если оба поля не заполнены то событие не никогда не завершается.
until_date - Дата завершения события. Формат YYYY-mm-dd. Не может быть заполнен одновременно с
полем count. Если оба поля не заполнены то событие не никогда не завершается.
until_time_type - Тип времени завершения события. Может принимать значения: ‘sunset’, ‘sunrise’,
‘time’. Заполнено если заполнено поле until_date.
until_time - Время завершения события. Формат: %H:%M. Заполнено если заполнено поле until_date и
until_time_type равен ‘time’.
until_time_offset - Сдвиг времени завершения события. Заполнено если заполнено поле until_date и
until_time_type равен ‘sunset’ или ‘sunrise’.
from_time_type - Тип времени начала события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
Заполнено если поле freq не равно ‘HOURLY’.
from_time - Время начала события. Формат: %H:%M. Заполнено если поле freq не равно ‘HOURLY’ и
from_time_type равен ‘time’.
from_time_offset - Сдвиг времени начала события. Может принимать отрицательные значения.
Заполнено если поле freq не равно ‘HOURLY’ и from_time_type равен ‘sunset’ или ‘sunrise’.
to_time_type - Тип времени окончания события. Может принимать значения: ‘sunset’, ‘sunrise’, ‘time’.
Заполнено если поле freq не равно ‘HOURLY’.
to_time - Время окончания события. Формат: %H:%M. Заполнено если заполнено поле freq не равно
‘HOURLY’ и to_time_type равен ‘time’.
to_time_offset - Сдвиг времени завершения события. Заполнено если заполнено поле freq не равно
‘HOURLY’ и to_time_type равен ‘sunset’ или ‘sunrise’.
bymonth - Месяцы в которые событие активно. Заполнено если поле freq равно ‘YEARLY’.
bymonthday - Дни месяца в которые событие активно. Заполнено если поле freq равно ‘MONTHLY’.
byweekday - Дни недели в которые событие активно. Заполнено если поле freq равно ‘WEEKLY’.
from_min - Минута с которой начинается событие. Заполнено если поле freq равно ‘HOURLY’.
to_min - Минута окончания события. Заполнено если поле freq равно ‘HOURLY’.

PUB lm/scheduler/events/changes

Публикует вновь созданные/измененные/удаленные события.

Payload format

{
 status: Literal['created', 'updated', 'deleted'],
 event: {
 "id": str,
 "title": str,
 "priority": int,
 "actions": {
 "player": Optional[{
 "cmd": Literal['play'],
 "entity_type": Union['playlist', 'cue'],
 "entity_id": int,
 }],
 "do1": Optional[{
 "state": Literal[0, 1],
 }],
 "do2": Optional[{
 "state": Literal[0, 1],
 }],
 "do3": Optional[{
 "state": Literal[0, 1],
 }],
 },
 "rrule": {
 "freq": Union['YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY'],
 "interval": int,
 "start_date": str,
 "start_time_type": Union['sunset', 'sunrise', 'time'],
 "start_time": Optional[str],
 "start_time_offset": Optional[int],
 "until_date": Optional[str],
 "until_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "until_time": Optional[str],
 "until_time_offset": Optional[int],
 "count": Optional[int],
 "from_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "from_time": Optional[str],
 "from_time_offset": Optional[int],
 "to_time_type": Optional[Union['sunset', 'sunrise', 'time']],
 "to_time": Optional[str],
 "to_time_offset": Optional[int],
 "bymonth": Optional[
 list[
 Union[
 'January', 'February', 'March', 'April', 'May', 'June',

'July',
 'August', 'September', 'October', 'November',
'December',
],
],
],
 "bymonthday": Optional[list[int]],
 "byweekday": Optional[list[Union['MO', 'TU', 'WE', 'TH', 'FR', 'SA',
'SU']]],
 "from_min": Optional[int],
 "to_min": Optional[int],
 }
 }
}

Example

{
 "status": "created",
 "event": {
 "id": "abe4c633-8e3f-4938-94e2-efd135d993fc",
 "title": "holiday",
 "priority": 1,
 "actions": {
 "player": {
 "cmd": "play",
 "entity_type": "playlist",
 "entity_id": 19
 },
 "do1": {
 "state": 1
 },
 "do2": null,
 "do3": null
 },
 "rrule": {
 "freq": "DAILY",
 "interval": 1,
 "start_date": "2024-01-20",
 "start_time_type": "time",
 "start_time": "00:00",
 "start_time_offset": null,
 "count": 1,
 "until_date": null,
 "until_time_type": null,
 "until_time": null,
 "until_time_offset": null,
 "from_time_type": "sunset",
 "from_time": null,
 "from_time_offset": 0,
 "to_time_type": "sunset",

 "to_time": null,
 "to_time_offset": 0,
 "bymonth": null,
 "bymonthday": null,
 "byweekday": null,
 "from_min": null,
 "to_min": null
 }
 }
}

status - Тип изменения. Может принимать значения ‘created’, ‘updated’, ‘deleted’.
event - Событие со всеми параметрами в формате SchedulerEvent. ___

SUB lm/scheduler/events/periods

Принимает запрос на публикацию всех одиночных событий за указанный период.

Запрос должен содержать cor data для последующей идентификации ответа. Запрос может содержать
resp_topic. В противном случае ответ будет опубликован в топик
lm/scheduler/events/periods/response.

Payload format

{
 from_datetime: str,
 to_datetime: str,
 filters: Optional[{
 player: bool,
 do1: bool,
 do2: bool,
 do3: bool,
 }]
}

Example

{
 "from_datetime": "2024-02-25T05:00:00",
 "to_datetime": "2024-04-08T05:00:00",
 "filters": {
 "player": true,
 "do1": false,
 "do2": false,
 "do3": false
 }
}

from_datetime - Дата и время начала диапазона в iso формате.
to_datetime - Дата и время окончания диапазона в iso формате.

filters - Опциональные фильтры для типов действий. Если не указаны, возвращаются события со всеми
типами действий.
player - Включать события с действиями плеера.
do1 - Включать события с действиями для цифрового выхода DO1.
do2 - Включать события с действиями для цифрового выхода DO2.
do3 - Включать события с действиями для цифрового выхода DO3.

PUB lm/scheduler/events/periods/response

Публикует список одиночных событий календаря за указанный период. Период задается в запросе. Запрос
принимается на топик lm/scheduler/events/periods

Payload format

[
 {
 id: str
 title: str
 start: str
 end: str
 priority: int
 duration: float
 }
]

Example

[
 {
 "id": "abe4c633-8e3f-4938-94e2-efd135d993fc",
 "title": "holiday",
 "priority": 1,
 "start": "2024-02-29T12:00:00+03:00",
 "end": "2024-03-02T12:00:00+03:00",
 "duration": 259200.0
 }
]

id - Уникальный идентификатор события.
title - Название события.
priority - Приоритет события. Чем выше значение тем выше приоритет.
start - Дата и время начала события в ISO формате.
end - Дата и время окончания события в ISO формате.
duration - Продолжительность события в секундах.

PUB lm/scheduler/player/status

Публикует текущее активное событие плеера если оно есть.

Payload formatСобытие есть:

{
 status: Literal['running'],
 event: {
 id: str,
 title: str,
 action: {
 cmd: Literal['play']
 entity_type: Literal['playlist', 'cue']
 entity_id: int
 }
 }
}

Example

{
 "status": "running",
 "event": {
 "id": "abe4c633-8e3f-4938-94e2-efd135d993fc",
 "title": "holiday",
 "action": {
 "cmd": "play",
 "entity_type": "playlist",
 "entity_id": 19
 }
 }
}

События нет:

{
 status: Literal['no_event'],
}

Example

{
 "status": "no_event"
}

status - Текущий статус расписания. Может принимать значения ‘running’, ‘no_event’.
event - Активное событие со всеми параметрами. Присутствует только когда status равен ‘running’.
id - Уникальный идентификатор события.
title - Название события.
action - Действие которое должно быть выполнено для данного события.
cmd - Команда для выполнения. Всегда равна ‘play’.
entity_type - Тип сущности для воспроизведения. Может принимать значения ‘playlist’, ‘cue’.
entity_id - Уникальный идентификатор сущности для воспроизведения.

PUB lm/scheduler/do/*/status

Публикует текущее активное событие управления цифровым выходом DO1 если оно есть.

PUB lm/scheduler/do/1/statusPUB lm/scheduler/do/2/statusPUB
lm/scheduler/do/3/status

Payload formatСобытие есть:

{
 status: Literal['running'],
 event: {
 id: str,
 title: str,
 action: {
 state: Literal[0, 1]
 }
 }
}

Example

{
 "status": "running",
 "event": {
 "id": "abe4c633-8e3f-4938-94e2-efd135d993fc",
 "title": "holiday",
 "action": {
 "state": 1
 }
 }
}

События нет:

{
 status: Literal['no_event'],
}

Example

{
 "status": "no_event"
}

status - Текущий статус расписания для DO1. Может принимать значения ‘running’, ‘no_event’.
event - Активное событие со всеми параметрами. Присутствует только когда status равен ‘running’.
id - Уникальный идентификатор события.
title - Название события.

action - Действие которое должно быть выполнено для данного события.
state - Состояние цифрового выхода. Может принимать значения 0 (выключен) или 1 (включен).

SUB lm/settings/datetime/timezone

Получает текущую таймзону.

Payload format

{
 timezone: str
}

Example

 {
 "timezone": "Europe/Moscow",
 }

SUB lm/settings/location/coordinates

Получает координаты устройства для расчета солнечного времени.

Payload format

{
 latitude: float
 longitude: float
}

Example

 {
 latitude: 56.821019190097616
 longitude: 60.59559633825789
 }

4 Управление устройствами Art-Net

Сервис осуществляет мониторинг и управления ArtNet и RDM устройствами.

PUB lm/artnet_devices_management_service/error

Публикует ошибки.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

{
 msg: str
 data: Any
}

msg - contain error message
data - contain related error data

PUB lm/artnet_devices_management_service/artnet/devices/changes

Публикует вновь созданные/измененные/удаленные ArtNet устройства.

Payload format

{
 status: Literal['created', 'updated', 'deleted']
 device: {
 mac_address: str
 ip_address: str
 subnet_mask: str
 default_gateway: str
 dhcp_status: bool
 name: str
 style: str
 firmware_version: str
 ports: dict[
 int,
 {
 bind_index: int
 is_input: bool
 is_output: bool
 port_type: Literal[
 'DALI',
 'ArtNet',
 'ADB',
 'Colortran_CMX',
 'Avab',
 'MIDI',
 'DMX512',
]
 name: str
 universe: int
 is_rdm_on: bool
 physical_port: Optional[int]

 out_signal: Optional[Literal['DMX', 'SPI']]
 is_data_transmitting: bool
 }
]
 status: str
 dev_mode: Optional[str]
 spi_settings: Optional[
 {
 chip: str
 mode: str
 period: int
 time_high_0: int
 time_high_1: int
 time_reset: int
 gamma: int
 bit_mode: str
 }
]
 dmx_settings: Optional[
 {
 break_time: int
 mab_time: int
 chan_time: int
 pause_time: int
 chan_num: int
 }
]
 rdm_devices_count: int
 }
}

PUB lm/artnet_devices_management_service/rdm/devices/changes

Публикует вновь созданные/измененные/удаленные RDM устройства.

Payload format

{
 status: Literal['created', 'updated', 'deleted']
 device: {
 uid: str
 art_net_device_mac: str
 art_net_device_ip: str
 port: int
 supported_params: dict[str, Any]
 }
}

uid - Уникальный идентификатор устройства.

art_net_device_mac - Mac адрес ArtNet устройства к которому подключено данное rdm устройство.
art_net_device_ip - IP адрес ArtNet устройства к которому подключено данное rdm устройство.
port - Номер порта ArtNet устройства к которому подключено данное rdm устройство.
supported_params - Словарь параметров и их значений.

PUB lm/artnet_devices_management_service/cmd_response

Публикует результаты выполнения асинхронных команд.

Используется для уведомления о завершении длительных операций, которые выполняются в фоновом
режиме. Клиент получает transaction_uid при инициации команды и может отслеживать её статус через
данный топик.

Payload format

{
 "transaction_uid": "string",
 "status": "string"
}

transaction_uid - Уникальный идентификатор транзакции, возвращаемый при инициации асинхронной
команды
status - Статус выполнения команды. Возможные значения: “done”, “error”

Example

{
 "transaction_uid": "550e8400-e29b-41d4-a716-446655440000",
 "status": "done"
}

5 Управление триггерами

PUB 'lm/trigger_service/trigger/trigger_list'

Публикует список всех триггеров. Топик всегда содержит актуальный список.

Payload format

[
 {
 name: str
 tr_type: str
 params: dict[str, Any]

 }
]

name - Имя триггера.
tr_type - Тип триггера.
params - Словарь с параметрами триггера.

Example

[
 {
 "name": "TriggerFromMqtt",
 "tr_type": "RawUDP",
 "params": {
 "network_type": "udp",
 "listen_ip": "0.0.0.0",
 "listen_port": "5555",
 "data": "any"
 }
 }
]

PUB lm/trigger_service/action/action_list

Публикует список всех action.
Топик всегда содержит актуальный список.

Payload format

[
 {
 name: str
 action_type: str
 params: dict[str, Any]
 }
]

name - Имя action.
action_type - Тип action.
params - Словарь с параметрами action.

Example

[
 {
 "name": "default",
 "action_type": "send_trigger_to_mqtt",
 "params": {
 "topic": "lm/trigger_service/trigger/",

 "payload": "",
 "retain": false
 }
 }
]

PUB lm/trigger_service/relation_list

Публикует список всех связей между триггером и action.

Payload format

[
 {
 trigger: {
 name: str
 tr_type: str
 params: dict[str, Any]
 }
 action: {
 name: str
 action_type: str
 params: dict[str, Any]
 }
 }
]

trigger - Словарь с триггером.
action - Словарь с action.

Example

[
 {
 "trigger": {
 "name": "TriggerFromMqtt",
 "tr_type": "RawUDP",
 "params": {
 "network_type": "udp",
 "listen_ip": "0.0.0.0",
 "listen_port": "5555",
 "data": "any"
 }
 },
 "action": {
 "name": "default",
 "action_type": "send_trigger_to_mqtt",
 "params": {
 "topic": "lm/trigger_service/trigger/",

 "payload": "",
 "retain": false
 }
 }
 }
]

SUB lm/trigger_service/trigger/add

Добавляет новый триггер.

На данный момент доступны три типа триггера: RawUDP и ArtNet и Mqtt.

RawUDP - Срабатывает при получении UDP пакета удовлетворяющего заданным параметрам.
ArtNet - Срабатывает при получении ArtNet пакета удовлетворяющего заданным параметрам.
Mqtt - Срабатывает при получении Mqtt сообщения удовлетворяющего заданным параметрам.

Payload format

{
 name: str
 tr_type: str
 params: dict[str, Any]
}

name - Имя триггера.
tr_type - Тип триггера.
params - Словарь с параметрами триггера. Параметры отличаются в зависимости от типа триггера.

Example

{
 "name": "TriggerFromMqtt",
 "tr_type": "RawUDP",
 "params": {
 "network_type": "udp",
 "listen_ip": "0.0.0.0",
 "listen_port": "5555",
 "data": "any"
 }
}

Ожидаемые Параметры

Параметры для триггера с типом RawUDP

 {
 network_type: Literal['udp']

 listen_ip: str
 listen_port: int
 data: str
 }

network_type - Тип сети. Должен быть ‘udp’.
listen_ip - Прослушиваемый ip.
listen_port - Прослушиваемый порт.
data - Полезная нагрузка. Принимает строку полностью отражающую полезную нагрузку UDP пакета.

Example RawUDP params

{
 "network_type": "udp",
 "listen_ip": "0.0.0.0",
 "listen_port": "5555",
 "data": "any"
}

Параметры для триггера с типом ArtNet

 {
 network_type: Literal['tcp', 'udp']
 listen_ip: str
 listen_port: int
 universe: int
 channel: int
 min_level: int
 max_level: int
 }

network_type - Тип сети. Принимает значения ‘tcp’ или ‘udp’.
listen_ip - Прослушиваемый ip.
listen_port - Прослушиваемый порт.
universe - Отражает значение параметра subuni из ArtNet пакета.
channel - Номер канала в ArtNet пакете.
min_level - Минимальное значение в канале для срабатывания триггера.
max_level - Максимальное значение в канале для срабатывания триггера.Example ArtNet params

{
 "network_type": "udp",
 "listen_ip": "0.0.0.0",
 "listen_port": "6454",
 "universe": 3,
 "channel": 5,
 "min_level": 1,
 "max_level": 124
}

Параметры для триггера с типом Mqtt

 {
 topic: str
 payload: str
 }

topic - Mqtt топик для отслеживания.
payload - Полезная нагрузка mqtt сообщения в виде байт. Должна точно совпадать.Example Mqtt
params

{
 "topic": "lm/di/port/1",
 "payload": "\x01"
}

SUB lm/trigger_service/trigger/delete

Удаляет триггер.

Payload format

{
 name: str
}

name - Имя триггера.Example

{
 "name": "TriggerFromMqtt",
}

SUB lm/trigger_service/action/add

Добавляет новый action.

На данный момент доступны два типа action: send_mqtt_msg_raw и send_trigger_to_mqtt.

send_mqtt_msg_raw - Отправляет по mqtt сообщение записанное в параметрах не внося в него
никаких изменений.
send_trigger_to_mqtt - Отправляет по mqtt сообщение в теле которого находится сработавший
триггер.

Payload format

{
 name: str
 action_type: str
 params: dict[str, Any]
}

name - Имя action.
action_type - Тип action.
params - Словарь с параметрами action. Различается в зависимости от типа action.Example

{
 "name": "default",
 "action_type": "send_trigger_to_mqtt",
 "params": {
 "topic": "lm/trigger_service/trigger/",
 "payload": "",
 "retain": false
 }
}

Ожидаемые Параметры

Параметры для actions с типом send_trigger_to_mqtt и send_trigger_to_mqtt совпадают.

{
 topic: str
 payload: str
 retain: bool
}

topic - Mqtt topic в который будет отправлено сообщение.
payload - Mqtt payload. Полезная нагрузка сообщения.
retain - Mqtt retain param.

Типа send_trigger_to_mqtt игнорирует поля payload и retain но в сообщении они должны
присутствовать.

Example params

{
 "topic": "lm/trigger_service/trigger/",
 "payload": "",
 "retain": false
}

SUB lm/trigger_service/action/delete

Удаляет action.

Payload format

{
 name: str
}

name - Имя action.

Example

{
 "name": "default",
}

SUB lm/trigger_service/set_trigger_to_action_relation

Создает связь между триггером и action.

Payload format

 trigger: {
 name: str
 tr_type: str
 params: dict[str, Any]
 }
 action: {
 name: str
 action_type: str
 params: dict[str, Any]
 }

trigger - Словарь с триггером.
action - Словарь с action.

Example

{
 "trigger": {
 "name": "TriggerFromMqtt",
 "tr_type": "RawUDP",
 "params": {
 "network_type": "udp",
 "listen_ip": "0.0.0.0",
 "listen_port": "5555",
 "data": "any"
 }
 },
 "action": {
 "name": "default",
 "action_type": "send_trigger_to_mqtt",
 "params": {
 "topic": "lm/trigger_service/trigger/",
 "payload": "",
 "retain": false

 }
 }
}

SUB lm/trigger_service/delete_trigger_to_action_relation

Удаляет связь между триггером и action.

Payload format

 trigger: {
 name: str
 tr_type: str
 params: dict[str, Any]
 }
 action: {
 name: str
 action_type: str
 params: dict[str, Any]
 }

trigger - Словарь с триггером.
action - Словарь с action.

Example

{
 "trigger": {
 "name": "TriggerFromMqtt",
 "tr_type": "RawUDP",
 "params": {
 "network_type": "udp",
 "listen_ip": "0.0.0.0",
 "listen_port": "5555",
 "data": "any"
 }
 },
 "action": {
 "name": "default",
 "action_type": "send_trigger_to_mqtt",
 "params": {
 "topic": "lm/trigger_service/trigger/",
 "payload": "",
 "retain": false
 }
 }
}

PUB lm/trigger_service/error

Публикует ошибки.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

{
 msg: str
 data: Any
}

msg - contain error message
data - contain related error data

SUB lm/trigger_service/delete_trigger_with_related_actions

Удаляет триггер и все связанные с ним действия.

Payload format

{
 name: str
}

name - Имя триггера.Example

{
 "name": "TriggerFromMqtt",
}

6. Настройки системы

Сервис осуществляет конфигурирование системных настроек ОС.

PUB lm/system_configurator/error

Публикует ошибки.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

{
 msg: str
 data: Any
}

msg - contain error message
data - contain related error data

PUB lm/system_settings/external_access/certificates

Публикует список всех x509 сертификатов.
Топик всегда содержит актуальный список.

Payload format

[
 {
 name: str
 cert_type: str
 public_bytes: str
 params: dict[str, Any]
 }
]

name - Имя сертификата.
cert_type - Тип сертификата. Может принимать значения ‘csr’ или ‘certificate’
params - Словарь с параметрами сертификата. Набор параметров отличается в зависимости от типа
сертификата.

Example

[
 {
 "cert_type": "certificate",
 "name": "cert_name",
 "params": {
 "issuer": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "san": "IP=192.168.0.3",
 "subject": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "valid_from": "1664440221.0",
 "valid_to": "1759048221.0"
 },
 "public_bytes": "-----BEGIN CERTIFICATE-----\n"
 "-----END CERTIFICATE-----\n"}]
 }
]

PUB lm/system_settings/external_access/web_access_settings

Публикует список настроек web доступа.
Топик всегда содержит актуальный список.

Payload format

{
 http_port: int
 https_port: int
 is_https_enabled: bool
 is_http_redirected: bool
 cert_name: str
}

http_port - Http порт. По умолчанию 80.
https_port - Https порт. По умолчанию 443.
is_https_enabled - Индикатор включен ли https.
is_http_redirected - Индикатор включена ли переадресация http to https.
cert_name - Имя сертификата сервера.

Example

{
 "http_port": 80,
 "https_port": 443,
 "is_https_enabled": false,
 "is_http_redirected": true,
 "cert_name": ""
}

SUB lm/system_settings/external_access/change_web_access_settings

Меняет настройки web доступа.

Payload format

{
 http_port: int
 https_port: int
 is_https_enabled: bool
 is_http_redirected: bool
 cert_name: str
}

http_port - Http порт. По умолчанию 80.
https_port - Https порт. По умолчанию 443.
is_https_enabled - Индикатор включен ли https.
is_http_redirected - Индикатор включена ли переадресация http to https.

cert_name - Имя сертификата сервера.

Example

{
 "http_port": 80,
 "https_port": 443,
 "is_https_enabled": false,
 "is_http_redirected": true,
 "cert_name": ""
}

SUB lm/system_settings/certificates/upload_certificate

Загружает сертификат и его ключ для дальнейшего использования в настройках доступа.

Payload format

{
 cert_name: str
 certificate: bytes
 key: bytes
 intermediate: bytes
}

cert_name - Читаемое имя сертификата.
certificate - x.509 сертификат в pem формате.
key - Приватный ключ в pem формате.
intermediate - (Опционально) промежуточный сертификат.

SUB
lm/system_settings/certificates/upload_certificate_corresponding_
csr

Загружает сертификат относящийся к сформированному ранее csr.

Payload format

{
 cert_name: str
 certificate: bytes
}

cert_name - Имя csr сертификата.
certificate - x.509 сертификат в pem формате.

SUB lm/system_settings/certificates/delete_certificate

Удаляет сертификат и все связанные с ним файлы.

Payload format

{
 id: int
 name: str
 cert_type: str
 public_bytes: str
 params: dict[str, Any]
}

id - (Опционально) Идентификатор сертификата.
name - Имя сертификата.
cert_type - Тип сертификата. Может принимать значения ‘csr’ или ‘certificate’
public_bytes - Открытый ключ сертификата.
params - Словарь с параметрами сертификата. Набор параметров отличается в зависимости от типа
сертификата.

Example

{
 "cert_type": "certificate",
 "name": "cert_name",
 "params": {
 "issuer": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "san": "IP=192.168.0.3",
 "subject": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "valid_from": "1664440221.0",
 "valid_to": "1759048221.0"
 },
 "public_bytes": "-----BEGIN CERTIFICATE-----\n"
 "-----END CERTIFICATE-----\n"}]

SUB lm/system_settings/certificates/generate_csr

Генерирует Certificate Signing Request.

Payload format

{
 cert_name: str
 cert_type: str
 key_size: int
 subject: str
 san: str

}

cert_name - Имя сертификата.
cert_type - Тип сертификата. Может принимать значения ‘csr’ или ‘certificate’
key_size - Размер ключа в байтах. Принимает значения 2048 иои 4096.
subject - Строка в формате rfc4514.
san - Стока представляющее расширение SubjectAltName. Принимаются только ip адреса или dns
имена идущие подряд через запятую без пробелов с префиксами IP= или DNS=.

Example

{
 "cert_name": "ss_cert23",
 "cert_type": "certificate",
 "key_size": 2048,
 "subject": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "san": "IP=192.168.0.3,DNS=domain.com"
}

SUB lm/system_settings/certificates/generate_self_sign_certificate

Генерирует самоподписанный сертификат.

Payload format

{
 cert_name: str
 cert_type: str
 key_size: int
 subject: str
 san: str
}

cert_name - Имя сертификата.
cert_type - Тип сертификата. Может принимать значения ‘csr’ или ‘certificate’.
key_size - Размер ключа в байтах. Принимает значения 2048 иои 2096.
subject - Строка в формате rfc4514.
san - Стока представляющее расширение SubjectAltName. Принимаются только ip адреса или dns
имена идущие подряд через запятую без пробелов с префиксами IP= или DNS=.

Example

{
 "cert_name": "ss_cert23",
 "cert_type": "certificate",
 "key_size": 2048,
 "subject": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "san": "IP=192.168.0.3,DNS=domain.com"
}

PUB lm/system_settings/network/interfaces/wired/eth*/statistics

PUB lm/system_settings/network/interfaces/wired/eth0/statistics

PUB lm/system_settings/network/interfaces/wired/eth1/statistics

Публикует информацию о проводном интерфейсе ethernet каждые 10 секунд.

Payload format

{
 status: str
 ip_assign_method: Literal['manual', 'dhcp']
 ip: str
 netmask: str
 gateway: str
 dns_assign_method: Literal['manual', 'dhcp']
 dns_servers: list[str]
 mac_address: str
}

status - Статус интерфейса. Может быть up или down.
ip_assign_method - Способ назначения ip адреса. Может быть manual или dhcp.
ip - IP адрес интерфейса.
netmask - Маска интерфейса.
gateway - Шлюз по умолчанию.
dns_assign_method - Способ назначения dns серверов. Может быть manual или dhcp.
dns_servers - Список dns серверов.
mac_address - MAC адрес интерфейса.

Example

{
 "status": "up",
 "ip_assign_method": "manual",
 "ip": "192.168.0.205",
 "netmask": "255.255.255.0",
 "gateway": "192.168.0.1",
 "dns_assign_method": "manual",
 "dns_servers": ["8.8.8.8", "8.8.4.4"],
 "mac_address": "e4:5f:01:a8:e0:6c"
}

SUB
lm/system_settings/network/interfaces/wired/eth*/set_ip_credentia
l

SUB lm/system_settings/network/interfaces/wired/eth0/set_ip_credentialSUB
lm/system_settings/network/interfaces/wired/eth1/set_ip_credential

Устанавливает ip адресацию и шлюз на интерфейс.

Поддерживает статическое назначение ip и назначение через dhcp.

Payload format

Статическая адресация:

{
 ip_assign_method: Literal['manual']
 static_ip: str
 static_netmask: str
 static_gateway: str
}

ip_assign_method - Способ назначения ip адреса. Должно быть manual.
static_ip - IPv4 адрес интерфейса
static_netmask - Сетевая маска интерфейса.
static_gateway - Шлюз по умолчанию.

Example

{
 "ip_assign_method": "manual",
 "static_ip": "192.168.0.205",
 "static_netmask": "255.255.255.0",
 "static_gateway": "192.168.0.1"
}

Динамическая адресация

{
 ip_assign_method: Literal['dhcp']
}

ip_assign_method - Способ назначения ip адреса. Должно быть dhcp.

Example

{
 "ip_assign_method": "dhcp"
}

SUB
lm/system_settings/network/interfaces/wired/eth*/set_dns_credenti
al

SUB lm/system_settings/network/interfaces/wired/eth0/set_dns_credential

SUB lm/system_settings/network/interfaces/wired/eth1/set_dns_credential

Назначение dns серверов на интерфейс.

Поддерживает статическое и динамическое (dhcp) назначение dns серверов.

Payload format

Статическое назначение:

{
 dns_assign_method: Literal['manual']
 static_dns_servers: list[str]
}

dns_assign_method - Способ назначения dns серверов. Должно быть manual.
static_dns_servers - Список DNS серверов.Example

{
 "dns_assign_method": "manual",
 "static_dns_servers": ["8.8.8.8", "8.8.4.4"]
}

Динамическое назначение:

{
 dns_assign_method: Literal['dhcp']
}

dns_assign_method - Способ назначения dns серверов. Должно быть dhcp.

Example

{
 "dns_assign_method": "dhcp"
}

PUB lm/system_settings/network/interfaces/modem/statistics

Публикует информацию о модемном интерфейсе каждые 10 секунд.

Payload format

{
 ip_assign_method: Literal['manual', 'dhcp']
 ip: str
 netmask: str
 gateway: str
 dns_assign_method: Literal['manual', 'dhcp']
 dns_servers: list[str]

 apn: {
 apn: str,
 username: str,
 password: str,
 }
 modem_status: {
 state: str,
 state_failed_reason: str,
 power_state: str,
 signal_quality: int,
 access_technologies: list[str]
 }
}

status - Статус интерфейса. Может быть up или down.
ip_assign_method - Способ назначения ip адреса. Может быть manual или dhcp.
netmask - IP адрес интерфейса.
gateway - Шлюз по умолчанию.
dns_assign_method - Способ назначения dns серверов. Может быть manual или dhcp.
dns_servers - Список dns серверов.
apn:

apn: APN сервер.
username: Имя пользователя для apn сервера.
password: Пароль для apn сервера.

modem_status:
state: Состояние подключения.
state_failed_reason: Причина ошибки если таковая есть.
power_state: Состояние питания модема.
signal_quality: Качество сигнала в процентах.
access_technologies: Список текущих режимов (LTE, UMTS и т.д.).

Example

{
 "status": "up",
 "ip_assign_method": "manual",
 "ip": "192.168.0.205",
 "netmask": "255.255.255.0",
 "gateway": "192.168.0.1",
 "dns_assign_method": "manual",
 "dns_servers": ["8.8.8.8", "8.8.4.4"],
 "apn": {
 "apn": "internet.mts.ru",
 "username": "mts",
 "password": "mts"
 },
 "modem_status": {
 "state": "connected",
 "state_failed_reason": "--",
 "power_state": "on",
 "signal_quality": 81,

 "access_technologies": ["LTE"]
 }
}

SUB lm/system_settings/network/interfaces/modem/set_ip_credential

Устанавливает ip адресацию и шлюз на интерфейс.

Поддерживает статическое назначение ip и назначение через dhcp.

Payload format

Статическая адресация

{
 ip_assign_method: Literal['manual']
 static_ip: str
 static_netmask: str
 static_gateway: str
}

ip_assign_method - Способ назначения ip адреса. Должно быть manual.
static_ip - IPv4 адрес интерфейса
static_netmask - Сетевая маска интерфейса.
static_gateway - Шлюз по умолчанию.Example

{
 "ip_assign_method": "manual",
 "static_ip": "192.168.0.205",
 "static_netmask": "255.255.255.0",
 "static_gateway": "192.168.0.1"
}

Динамическая адресация

{
 ip_assign_method: Literal['dhcp']
}

ip_assign_method - Способ назначения ip адреса. Должно быть dhcp.

Example

{
 "ip_assign_method": "dhcp"
}

SUB lm/system_settings/network/interfaces/modem/set_dns_credential

Назначение dns серверов на интерфейс.

Поддерживает статическое и динамическое (dhcp) назначение dns серверов.

Payload format

Статическое назначение:

{
 dns_assign_method: Literal['manual']
 static_dns_servers: list[str]
}

dns_assign_method - Способ назначения dns серверов. Должно быть manual.
static_dns_servers - Список DNS серверов.

Example

{
 "dns_assign_method": "manual",
 "static_dns_servers": ["8.8.8.8", "8.8.4.4"]
}

Динамическое назначение

{
 dns_assign_method: Literal['dhcp']
}

dns_assign_method - Способ назначения dns серверов. Должно быть dhcp.

Example

{
 "dns_assign_method": "dhcp"
}

SUB lm/system_settings/network/interfaces/modem/set_apn_credential

Назначение настроек apn на интерфейс.

Поддерживается только статическое назначение.

Payload format

Статическое назначение:

{
 apn: str
 username: str
 password: str
}

apn - APN сервер.
username - Имя пользователя если есть либо пустая строка.
password - Пароль если есть либо пустая строка.

Example

{
 "apn": "internet.mts.ru",
 "username": "mts",
 "password": "mts"
}

PUB lm/system_settings/datetime/rtc_status

Публикует статус rtc модуля

Payload format

 {
 is_active: bool
 }

is_active - Активен ли rtc модуль.

Example

{
 "is_active": true,
}

SUB lm/system_settings/datetime

Принимает команды на изменение даты и времени конфигурации системы.

Список принимаемых команд

Set Date

Description: > Set system date.

Values:

command: str > set_date

data: dict > date: str - date in format ‘Y:M:D’

Example:
{'command': 'set_date', 'data': {'date': '1970:01:01'}}

Set Time

Description: > Set system time.

Values:

command: str > set_time

data: dict > time: str - time in format ‘HH:mm:ss’

Example:
{'command': 'set_time', 'data': {'time': '13:00:00'}}

Set Datetime

Description: > Set system date and time.

Values:

command: str > set_datetime

data: dict > datetime: str - time in format ‘Y:M:D HH:mm:ss’

Example:
{'command': 'set_datetime', 'data': {'datetime': '1970:01:01 13:00:00'}}

Change Ntp Status

Description: > Enable or disable ntp synchronization.

Values:

command: str > change_ntp_status

data: dict > ntp: bool - is ntp sync enable

Example:
{'command': 'change_ntp_status', 'data': {'ntp': True}}

Set Ntp Servers

Description: > Set ntp servers. > Generate ntp config, replace it then restart systemd-timesyncd.service > Accepts list

of ip addresses or domain names

Values:

command: str > set_ntp_servers

data: dict > ntp_servers: list[str] - list of servers ip addresses or dns names

Example:
{'command': 'set_ntp_servers', 'data': {'ntp_servers': ['192.168.0.2',
'ntp1.stratum2.com']}}

Set timezone

Description: > Set system timezone.

Values:

command: str > set_timezone

data: dict > timezone: str - timezone name

Example:
{'command': 'set_timezone', 'data': {'timezone': 'Europe/London'}}

Base format for command payload

{
 'command': str
 'data': dict[str, Any]
}

command - command name

data - any data for command

Example:

{'command': 'set_ip', 'data': {'ifname': 'eth0', 'ip': '192.168.0.1'}}

SUB lm/system_settings/power_control

Управляет питанием устройства

Payload format

{
 command: str
 delay: int
}

command - Команда управления питанием. Может принимать значения “reboot” и “shutdown”.

delay - Задержка срабатывания команды в минутах.

Example

{
 "command": "reboot",
 "delay": "0",
}

Certificate params format

Парамеры сертификата отличаются в зависимости от его типа. В данный момент поддерживается два типа
сертификата x509: certificate и csr.

x509 certificate params format

{
 subject: str
 san: str
 issuer: str
 valid_from: float
 valid_to: float
}

subject - Строка в формате rfc4514.
san - Стока представляющее расширение SubjectAltName. Принимаются только ip адреса или dns
имена идущие подряд через запятую без пробелов с префиксами IP= или DNS=.
issuer - Строка в формате rfc4514.
valid_from - Дата с которой сертификат действителен. Формат Posix timestamp.
valid_to - Дата по которую сертификат действителен. Формат Posix timestamp.

Example

{
 "issuer": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "san": "IP=192.168.0.3",
 "subject": "OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA",
 "valid_from": "1664440221.0",
 "valid_to": "1759048221.0"
}

x509 csr params format

{
 subject: str
 san: str
}

subject - Строка в формате rfc4514.
san - Стока представляющее расширение SubjectAltName. Принимаются только ip адреса или dns

имена идущие подряд через запятую без пробелов с префиксами IP= или DNS=.

Example

{ “subject”: “OU=test ou,CN=domain.com,O=test o,L=123,ST=st,C=UA”, “san”:
“IP=192.168.0.3”, }

7. Управление Di Do интерфейсами плеера

PUB lm/di/port/*

PUB lm/di/port/0 (player V1 only)PUB lm/di/port/1PUB lm/di/port/2 (player V2 only)PUB
lm/di/port/3 (player V2 only)

Публикует состояние di порта

di_port_number - Номер di порта.

Payload format

int

Example

1

int - Статус Di порта. 1 - активен, 0 - неактивен.

PUB lm/do/port/*

PUB lm/do/port/0 (player V1 only)

PUB lm/do/port/1PUB lm/do/port/2 (player V2 only)PUB lm/do/port/3 (player V2 only)

Публикует состояние do порта

do_port_number - Номер do порта.

Payload format

int

Example

1

int - Статус DO порта. 1 - активен, 0 - неактивен.

SUB lm/do/change_state

Принимает команды для изменения состояния DO порта.

Payload command format

{
 "port": int,
 "state": int,
}

Example

 {
 "port": 1,
 "state": 1,
 }

port - Номер do порта.
state - Статус порта. 1 - активен, 0 - неактивен.

8. Управление RS485 интерфейсами плеера

PUB lm/serialport_controller/error

Публикует ошибки.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

{
 msg: str
 data: Any
}

msg - contain error message
data - contain related error data

PUB lm/serialport_controller/ports

Публикует список rs485 портов.

Payload format

[
 {
 name: str
 mode: Literal['rs485', 'dmxOut']
 }
]

name - Имя порта.
mode - Предназначение порта.

Example

[
 {
 "name": "port1",
 "mode": "rs485",
 },
 {
 "name": "port2",
 "mode": "rs485",
 },
 {
 "name": "port3",
 "mode": "dmxOut",
 },
 {
 "name": "port4",
 "mode": "dmxOut",
 }
]

SUB lm/serialport_controller/ports/change_mode

Меняет предназначение порта.

Payload format

{
 name: str
 mode: Literal['rs485', 'dmxOut']
}

name - Имя порта.
mode - Предназначение порта.

Example

{
 "name": "port1",
 "mode": "rs485",
}

9. Управление светодиодами плеера

PUB 'lm/leds/state'

Публикует состояние диодов rs485 портов

Payload format

{
 Port1: {
 green: bool,
 red: bool,
 },
 Port2: {
 green: bool,
 red: bool,
 },
 Port3: {
 green: bool,
 red: bool,
 },
 Port4: {
 green: bool,
 red: bool,
 },
}

Example

{
 "Port1": {
 "green": true,
 "red": true,
 },
 "Port2": {
 "green": true,
 "red": true,
 },
 "Port3": {
 "green": true,

 "red": true,
 },
 "Port4": {
 "green": true,
 "red": true,
 },
}

green - Статус зеленого светодиода.
red - Статус красного светодиода.

SUB lm/leds/change_state

Принимает команды для изменения состояния диодов у rs485 порта.

Payload command format

{
 pub port: Literal['Port1', 'Port2', 'Port3', 'Port4'],
 green: bool,
 red: bool,
}

Example

 {
 "port": "Port1",
 "green": true,
 "red": false,
 }

port - Имя rs485 порта.
green - Статус зеленого светодиода.
red - Статус красного светодиода.

SUB lm/leds/blink

Принимает команды для мигания всех светодиодов на всех rs485 портах.

Payload format

{
 times: int,
 interval: int,
}

Example

{
 "times": 5,
 "interval": 1000

}

times - Количество миганий (от 1 до 255).
interval - Интервал между миганиями в миллисекундах.

10. Обновление программного обеспечения плеера

PUB lm/update_service/version/version_list

Публикует список версий всех модулей. Топик всегда содержит актуальный список.

Payload format

[
 {
 id: int
 version: str
 subversion: Optional[str]
 module: str
 description: Optional[str]
 }
]

id - version id
version - version number
subversion - (Optional) subversion.
module - module name
description - (Optional) description

Example

[
 {
 "id": 1,
 "version": "20",
 "subversion": null,
 "module": "frontend",
 "description": null
 }
]

PUB lm/update_service/update/update_list'

Публикует список обновлений. Топик всегда содержит актуальный список.

Payload format

[
 {
 id: int
 version: str
 status: str
 filename: Optional[str]
 update_path: str
 extracted_path: Optional[str]
 backup_path: Optional[str]
 description: Optional[str]
 }
]

id - update id.
version - update version.
status - update status.
filename - (Optional) update filename.
update_path - path to update file.
extracted_path - path to extracted files.
backup_path - (Optional) update version.
description - (Optional) description.

Example

[
 {
 "id": 1,
 "version": "2022",
 "status": "installed",
 "filename": "lmp_2022.update",
 "update_path":
"/home/lightmaster/lightmaster/updater/lmp_2022.update",
 "extracted_path":
"/home/lightmaster/lightmaster/updates_store/lmp_2022",
 "backup_path":
"/home/lightmaster/lightmaster/backups_store/20220519181452_lmp_v0_full_backu
p",
 "description": "A error occurred during installation update.
Installation filed. None"
 }
]

SUB lm/update_service/update/add_update

Добавляет обновление в базу.

Payload format

{
 file: str
}

file: str - путь до файла обновления

Example

{"file": "/home/lightmaster/projects/wess-
group/lightmaster/updater/lmp_2022.update"}

SUB lm/update_service/update/check_update

Проверяет совместимость обновления.

Payload format

{
 id: int
}

id - id обновления

Example

{'id': 5}

SUB lm/update_service/update/initial_update

Совмещает добавление обновления в базу и его проверку.

Payload format

{
 file: str
}

file: str - путь до файла обновления

Example

{"file": "/home/lightmaster/projects/wess-
group/lightmaster/updater/lmp_2022.update"}

SUB lm/update_service/update/install_update

Устанавливает обновление

Payload format

{
 id: int
}

id - id обновления

Example

{'id': 5}

SUB lm/update_service/update/restore_update

Откатывает обновление на предыдущую версию.

Payload format

{
 id: int
}

id - id обновления

Example

{'id': 5}

SUB lm/update_service/update/delete_update

Удаляет обновление и все связанные с ним файлы.

Payload format

{
 id: int
}

id - id обновления

Example

{'id': 5}

SUB lm/update_service/version/get_versions_list

Запрос на публикацию списка версий всех модулей.

Публикация происходит в топик lm/update_service/version/get_versions_list/response

В заголовок запроса могут быть включены необязательные поля:

Correlation data
Response topic

Corelation data любой уникальный идентификатор запроса. Зеркально устанавливается в публикуемый ответ
и служит для идентификации ответа со стороны клиента.

Response topic если установлен то ответ публикуется в указанный топик вместо стандартного.

PUB lm/update_service/version/get_versions_list/response

Публикует ответ на запрос из топика lm/update_service/version/get_versions_list.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

[
 {
 id: int
 version: str
 subversion: Optional[str]
 module: str
 description: Optional[str]
 }
]

id - version id
version - version number
subversion - (Optional) subversion.
module - module name
description - (Optional) description

Example

[
 {

 "id": 1,
 "version": "20",
 "subversion": null,
 "module": "frontend",
 "description": null
 }
]

SUB lm/update_service/version/get_module_version

Публикует версию конкретного модуля.

Публикация происходит в топик lm/update_service/version/get_module_version/response

В заголовок запроса могут быть включены необязательные поля:

Correlation data
Response topic

Corelation data любой уникальный идентификатор запроса. Зеркально устанавливается в публикуемый ответ
и служит для идентификации ответа со стороны клиента.

Response topic если установлен то ответ публикуется в указанный топик вместо стандартного.

Payload format

{
 module: str
}

module - название модуля

Example

{'module': 'update_service'}

PUB lm/update_service/version/get_module_version/response

Публикует ответ на запрос из топика lm/update_service/version/get_module_version.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

{
 id: int

 version: str
 subversion: Optional[str]
 module: str
 description: Optional[str]
}

id - version id
version - version number
subversion - (Optional) subversion.
module - module name
description - (Optional) description

Example

{
 "id": 1,
 "version": "20",
 "subversion": null,
 "module": "frontend",
 "description": null
}

SUB lm/update_service/update/get_updates_list

Запрос на публикацию списка всех обновлений добавленных в базу.

Публикация происходит в ветку lm/update_service/update/get_updates_list/response

В заголовок запроса могут быть включены необязательные поля:

Correlation data
Response topic

Corelation data любой уникальный идентификатор запроса. Зеркально устанавливается в публикуемый ответ
и служит для идентификации ответа со стороны клиента.

Response topic если установлен то ответ публикуется в указанный топик вместо стандартного.

PUB lm/update_service/update/get_updates_list/response

Публикует ответ на запрос из топика lm/update_service/update/get_updates_list.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

[
 {

 id: int
 version: str
 status: str
 filename: Optional[str]
 update_path: str
 extracted_path: Optional[str]
 backup_path: Optional[str]
 description: Optional[str]
 }
]

id - update id.
version - update version.
status - update status.
filename - (Optional) update filename.
update_path - path to update file.
extracted_path - path to extracted files.
backup_path - (Optional) update version.
description - (Optional) description.

Example

[
 {
 "id": 1,
 "version": "2022",
 "status": "installed",
 "filename": "lmp_2022.update",
 "update_path":
"/home/lightmaster/lightmaster/updater/lmp_2022.update",
 "extracted_path":
"/home/lightmaster/lightmaster/updates_store/lmp_2022",
 "backup_path":
"/home/lightmaster/lightmaster/backups_store/20220519181452_lmp_v0_full_backu
p",
 "description": "A error occurred during installation update.
Installation filed. None"
 }
]

PUB lm/update_service/error

Публикует ошибки.

Выставляет заголовок Correlation data если он был установлен в запросе.

Payload format

{
 msg: str
 data: Any
}

msg - contain error message
data - contain related error data

